GCE AS/A level

0977/01

MATHEMATICS - FP1
 Further Pure Mathematics

P.M. WEDNESDAY, 18 June 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Differentiate $\frac{1}{x^{2}}$ from first principles.
(b) The function f is defined on the domain $\left(0, \frac{\pi}{2}\right)$ by

$$
f(x)=(\sec x)^{x}
$$

Obtain an expression for $f^{\prime}(x)$, simplifying your answer.
2. (a) Find an expression in its simplest form for

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+3) . \tag{4}
\end{equation*}
$$

(b) Given that the sum of the first n terms of another series is $n(n+3)$, obtain an expression for the nth term of the series.
3. Consider the following equations.

$$
\begin{aligned}
& x+2 y+4 z=3 \\
& x-y+2 z=4, \\
& 4 x-y+10 z=k
\end{aligned}
$$

Given that the equations are consistent,
(a) find the value of k,
(b) determine the general solution of the equations.
4. The complex number z is given by

$$
z=\frac{1+2 \mathrm{i}}{1-\mathrm{i}}
$$

Find the modulus and the argument of z.
5. The roots of the cubic equation

$$
x^{3}+2 x^{2}+2 x+3=0
$$

are denoted by α, β, γ.
(a) Find the cubic equation whose roots are $\beta \gamma, \gamma \alpha, \alpha \beta$.
(b) Show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=0
$$

Deduce the number of real roots of the cubic equation

$$
x^{3}+2 x^{2}+2 x+3=0
$$

justifying your answer.
6. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{rrr}
\lambda & 2 & 3 \\
-1 & 1 & 1 \\
2 & \lambda & 2
\end{array}\right]
$$

(a) Find the values of λ for which \mathbf{A} is singular.
(b) Given that $\lambda=-1$,
(i) find the adjugate matrix of \mathbf{A},
(ii) find the inverse of \mathbf{A}.
7. The transformation T in the plane consists of a clockwise rotation through 90° about the origin, followed by a translation in which the point (x, y) is transformed to the point $(x+1, y+2)$, followed by a reflection in the y-axis.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
0 & -1 & -1 \tag{4}\\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the equation of the image under T of the line $y=2 x+1$.
8. Using mathematical induction, prove that

$$
\sum_{r=1}^{n}\left(r \times 2^{r-1}\right)=1+2^{n}(n-1)
$$

for all positive integers n.
9. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w=z(z-1) .
$$

(a) Obtain expressions for u and v in terms of x and y.
(b) The point P moves along the line $x+y=0$. Find the equation of the locus of Q.

END OF PAPER

